Intercultural communication under circumstances
Main Article Content
Abstract
Abstract. The aim of this research is to highlight the great importance that intercultural communication has, especially in the circumstances of multi-ethnic life not only in Kosovo, but also more widely in the Balkans, etc. As a result of this research, it appears that intercultural communication in Albanian, but also Balkan studies, has not been researched enough and deserves to be followed and advanced in the future. Intercultural communication is a wide spectrum of heterogeneous knowledge and integrated into textual wholes in different languages
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Asaad, R., & Ali, R. (2019). Back Propagation Neural Network(BPNN) and Sigmoid Activation Function in Multi-Layer Networks.Academic Journal Of Nawroz University,8(4), 216. doi: 10.25007/ajnu.v8n4a464.[2] Zhang C., Zhang Z.A, (2010). Survey of Recent Advances in Face Detection.Microsoft Corporation; Albuquerque, NM, USA. TechReport, No. MSR-TR-2010-66.[3] 3.Ekman P., Friesen W., Hager J.(2002). Facial Action Coding System: The Manual on CD ROM.A Human Face; Salt Lake City, UT, USA.[4] Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatial-contextual information.European Journal of Remote Sensing,47(1), 389-411.[5] Kwon, O. W., Chan, K., Hao, J., & Lee, T. W. (2003). Emotion recognition by speech signals. InEighth European Conference on Speech Communication and Technology.[6] Schuller, B., Rigoll, G., & Lang, M. (2003, April). Hidden Markov model-based speech emotion recognition. In2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP'03).(Vol. 2, pp. II-1). IEEE.[7] El Ayadi, M., Kamel, M. S., & Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases.Pattern Recognition,44(3), 572-587.[8] Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion recognition in human-computer interaction.IEEE Signal processing magazine,18(1), 32-80.[9] Nwe, T. L., Foo, S. W., & De Silva, L. C. (2003). Speech emotion recognition using hidden Markov models.Speech communication,41(4), 603-623.[10] Busso, C., Lee, S., & Narayanan, S. (2009). Analysis of emotionally salient aspects of fundamental frequency for emotion detection.IEEE transactions on audio, speech, and language processing,17(4), 582-596